CreativeLive teaches millions of students worldwide with cloud video

When Yasmin Abdi discovered her love of photography, she was a Somali refugee in Saudi Arabia with little more than a dream.
As Abdi came to realize her passion for capturing powerful images, she searched for ways to learn more about photography but had very limited access to formal education. When she found CreativeLive, Abdi didn’t even own a camera, “but I knew this is something I wanted to do.”
Now a professional photographer in the US, Abdi is just one of the millions of CreativeLive students worldwide who have transformed their lives and turned their dreams into reality through education. We’ve reached a total of 10 million students and streamed a combined 50 million hours of CreativeLive video courses.
When we started CreativeLive in 2010, our goal was to transform creative education by knocking down the geographic and financial barriers to access that had long kept people like Abdi from realizing their goals in career, hobby and life.
Now, thanks to the support from the IBM Cloud Video Ustream platform, we’ve taken the world’s top experts in creativity, self-improvement and entrepreneurship far beyond the confines of a classroom, bringing them to anyone with a connected device.
CreativeLive has attracted some of the top names in their fields: Pulitzer, Grammy and Oscar winners; New York Times bestselling authors; thought leaders and legendary entrepreneurs. These are experts who have earned their stripes by not just teaching but doing; doers who can speak to what happens outside the comfort of the classroom. For example, Tim Ferriss — one of Fast Company’s “most innovative business people” and the seventh “most powerful” personality on Newsweek’s Digital 100 power index — teaches a wildly popular class on money and life skills.
Students can learn psychology, personal finance and entrepreneurship from New York Times best-selling author Ramit Sethi, personal branding from Debbie Millman (one of Graphic Design USA’s “most influential designers working today”), or the craft of storytelling from Alex Blumberg (host of NPR’s Planet Money and contributor to This American Life).
But the world’s top experts aren’t a complete solution. We also needed the right technology to deliver their instruction to a global audience. The worldwide growth of the internet has given us reach that was unimaginable just a few decades ago and to take full advantage of that we knew CreativeLive had to provide an engaging experience that spoke the visual language of this new, internet-native audience via best-in-class production values. It’s been said that the medium is the message, and we believe that’s never been more true than now.
The IBM Cloud Video Ustream platform, which underpins every class we stream, provided a solution for delivering this rich content to a global audience. By placing the power of high-quality education taught by the world’s top experts in the hands and on the screens of our students, we’re empowering them to pursue their passions, hone their creative skills and use their talents to create the careers and lives of their dreams.
No matter their backgrounds, experiences or locations, today’s students have unprecedented access to a world-class education. For the first time in history, anyone with an internet connection can learn skills directly from the world’s top experts. In an ever-changing international job market, the ability to rapidly acquire new skills is more important than ever.
We can see the transformational power of this new educational paradigm through people like Abdi. When she began her first CreativeLive photography course, she spoke only limited English. After immigrating to the United States in 2012, she’s now the founder of a successful photography studio in Sacramento.
As powerful as her story is, what’s equally inspiring is that there are countless more like it. We are in the middle of a tectonic shift as millions turn their passions into their careers
As we work to reach millions more students and broadcast millions more hours of education, I couldn’t be more excited to hear more stories about our students unlocking their creative potential, finding further fulfillment in their professions and adding to our vibrant community. The future of education is here.
Learn more about IBM Cloud video solutions.
The post CreativeLive teaches millions of students worldwide with cloud video appeared first on news.
Quelle: Thoughts on Cloud

220,000 cores and counting: MIT math professor breaks record for largest ever Compute Engine job

By Alex Barrett, GCP Blog Editor & Michael Basilyan, Product Manager, Compute Engine

An MIT math professor recently broke the record for the largest ever Compute Engine cluster, with 220,000 cores on Preemptible VMs, the largest known high-performance computing cluster to ever run in the public cloud.

Andrew V. Sutherland is a computational number theorist and Principal Research Scientist at MIT, and is using Compute Engine to explore generalizations of the Sato-Tate Conjecture and the conjecture of Birch and Swinnerton-Dyer to curves of higher genus. In his latest run, he explored 1017 hyperelliptic curves of genus 3 in an effort to find curves whose L-functions can be easily computed, and which have potentially interesting Sato-Tate distributions. This yielded about 70,000 curves of interest, each of which will eventually have its own entry in the L-functions and Modular Forms Database (LMFDB).

Finding suitable genus 3 curves “is like searching for a needle in a fifteen-dimensional haystack,” Sutherland said. “Sometimes I like to describe my work as building telescopes for mathematicians.”

It also requires a lot of compute cycles: For each curve that’s examined, its discriminant must be computed; the discriminant of a curve serves as an upper bound on the complexity of computing its L-function. This task is trivial in genus 1, but in genus 3 may involve evaluating a 50 million term polynomial in 15 variables. Each curve that’s a candidate for inclusion in the LMFDB must also have many other of its arithmetic and geometric invariants computed, including an approximation of its L-function and Sato-Tate distribution, as well as information about any symmetries it may possess. The results can be quite large, and some of this information is stored as Cloud Storage nearline objects. Researchers can browse summaries of the results on the curve’s home page in the LMFDB, or download more detailed information to their own computer for further examination. The LMFDB provides an online interface to some 400 gigabytes of metadata housed in a MongoDB database that also runs on Compute Engine.

Sutherland began using Compute Engine in 2015. For his first-ever job, he fired up 2,250 32-core instances and completed about 60 CPU-years of computation in a single afternoon.

Before settling on Compute Engine, Sutherland ran jobs on his own 64-core machine, which could take months, or wrangled for compute time on one of MIT’s clusters. But getting the number of cores he needed often raised eyebrows, and he was limited by the software configurations he could use. By running on Compute Engine, Sutherland can install exactly the operating system, libraries and applications he needs, and thanks to root access, he can update his environment at will.

Sutherland considered running his jobs on AWS before choosing Google but was dissuaded by its Spot Instances model, which forces you to name your price up front, with prices that can vary significantly by region and fluctuate over time. A colleague encouraged him to try Compute Engine Preemptible VMs. These are full-featured instances that are priced up to 80% less than regular equivalents, but can be interrupted by Compute Engine. That was fine with Sutherland. His computations are embarrassingly parallel — they can be easily separated into multiple, independent tasks — and he grabs available instances across any and all Google Cloud Regions. An average of about 2-3% of his instances are typically preempted in any given hour, but a simple script automatically restarts them as needed until the whole job is complete.

To coordinate the instances working on a job, Sutherland uses a combination of Cloud Storage and Datastore. He used the python client API to implement a simple ticketing system in Datastore that assigns tasks to instances. Instances periodically checkpoint their progress on their local disks from which they can recover if preempted, and they store their final output data in a Cloud Storage bucket, where it may undergo further post-processing once the job has finished.

All told, having access to the scale and flexibility of Compute Engine has freed Sutherland up to think much bigger with his research. For his next run, he hopes to expand his search to non-hyperelliptic curves of genus 3, breaking his own record with a 400,000-core cluster. “It changes your whole outlook on research when you can ask a question and get an answer in hours rather than months,” he said. “You ask different questions.”
Quelle: Google Cloud Platform