Microsoft named a Leader in the IDC MarketScape: Worldwide MLOps Platforms 2022 Vendor Assessment

We’re excited to share that Microsoft has been recognized as a Leader in the IDC MarketScape Worldwide Machine Learning Operations (MLOps) Platforms 2022 Vendor Assessment. Microsoft holds a deep understanding of MLOps market trends, strong customer adoption, broad partner ecosystem, and continued product investments in building a differentiated MLOps platform.

The report cited several key strengths including product and business capabilities across the entire machine learning (ML) lifecycle as well as an expansive customer footprint and partner network. 

"Microsoft provides a wide array of enterprise-grade MLOps tools for quality and compliance that can augment any ML development environment on-premises, across clouds, or in a hybrid cloud environment." —IDC MarketScape: Worldwide Machine Learning Operations Platforms 2022 Vendor Assessment

Source: "IDC MarketScape: Worldwide Machine Learning Operations Platforms 2022 Vendor Assessment", By: Kathy Lange, Raghunandhan Kuppuswamy, and David Schubmehl, December 2022, IDC #US48325822.

Do more with less with MLOps on Azure

While machine learning becomes more mainstream across industries, there are many challenges like data governance, security, data compliance, and auditability that companies need to consider when productionizing machine learning models. These organizations look to a unified machine learning platform to manage the entire ML lifecycle to bring models to production faster and at scale, improving operational efficiencies of data science teams with MLOps. At Microsoft, we consider MLOps as a philosophy rather than a product and, as such, our approach incorporates people, processes, and platform to deliver continuous value with fewer resources for machine learning. MLOps bring benefits to organizations by automating repeatable actions, facilitating collaboration across teams, and ensuring full visibility and reproducibility into the end-to-end ML lifecycle.

Azure Machine Learning helps data scientists and ML engineers streamline training, deployment, and management of thousands of models across on-premises, multicloud, and even at the edge using native MLOps capabilities such as model registry, CI/CD pipelines with deep integration with Azure DevOps and GitHub, managed online endpoints for real-time inference, and experiment tracking and lineage with MLflow. PepsiCo has been using MLOps capabilities in Azure Machine Learning to automate model creation and deployment and analyze store customer data to respond to customer demand more efficiently. In fact, they have succeeded in eliminating 4,300 days of manual work a year.

Enhance collaboration across the organization

We believe machine learning is a team sport that requires collaboration across people with a different range of skill sets, such as data scientists, machine learning engineers, and IT admins. One of the key features mentioned in the report is that Azure Machine Learning enables greater collaboration across multiple data science teams through registries. Registries in Azure Machine Learning are organization-wide repositories of machine learning assets: models, environments, and components. Registries make multi-environment MLOps easier by helping teams share and reuse models developed in a different workspace, by a different team without manually copying them over.

Another feature that fosters collaboration between data scientists and business professionals is the Responsible AI dashboard and scorecard, a single interface to help organizations implement Responsible AI in practice effectively and efficiently. The Responsible AI scorecard helps contextualize the model and data health insights with both technical and non-technical audiences, bringing stakeholders along as well as assisting in compliance reviews. Microsoft is committed to accelerating our innovations in Responsible AI.

Microsoft is proud to be recognized as a Leader in the IDC MarketScape Worldwide MLOps Platforms 2022 Vendor Assessment, and we are excited by innovations happening at Microsoft and across the industry that empower data scientists and machine learning engineers to fully operationalize the ML lifecycle. You can read and learn from the report excerpt.

Learn more

Explore other analyst reports for Azure AI.
Read the latest feature announcements from Azure Machine Learning on the Tech Community blog.
Download an excerpt of the IDC Marketscape Worldwide MLOps Platforms 2022 Vendor Assessment to learn why Microsoft is named a Leader.



About the graphic:

IDC MarketScape vendor analysis model is designed to provide an overview of the competitive fitness of ICT suppliers in a given market. The research methodology utilizes a rigorous scoring methodology based on both qualitative and quantitative criteria that results in a single graphical illustration of each vendor’s position within a given market. The Capabilities score measures vendor product, go-to-market, and business execution in the short term. The Strategy score measures alignment of vendor strategies with customer requirements in a 3-5-year timeframe. Vendor market share is represented by the size of the circles. Vendor year-over-year growth rate relative to the given market is indicated by a plus, neutral, or minus next to the vendor name.
Quelle: Azure

Amazon AppFlow kündigt 10 neue Konnektoren an

Amazon AppFlow kündigt die Veröffentlichung von 10 neuen Datenkonnektoren für Software-as-a-Service (SaaS) -Anwendungen an. Mit den neuen Konnektoren können Sie Ihre Daten von Asana, Delighted, Google Calendar, Intercom, JDBC, PayPal, Pendo, Smartsheet, Snapchat Ads und WooCommerce übertragen. Diese neuen Konnektoren erleichtern Kunden den Zugriff auf ihre Daten für Anwendungsfälle wie Data Lake-Hydratation, Analytik und Machine Learning sowie Datenspeicherung.

Amazon RDS Multi-AZ mit zwei lesbaren Standbys für RDS PostgreSQL unterstützt jetzt eingehende Replikation

Amazon Relational Database Service (Amazon RDS) für PostgreSQL unterstützt jetzt eingehende Replikation von Amazon RDS Single-AZ-Datenbank (DB)-Instances und Amazon RDS Multi-AZ DB-Instances mit einem Standby zu Amazon RDS Multi-AZ-Bereitstellungen mit zwei lesbaren Standby-Instances. Sie können diese eingehende Replikation verwenden, um Ihre vorhandenen Amazon RDS PostgreSQL-Bereitstellungen innerhalb weniger Minuten auf Amazon RDS Multi-AZ-Bereitstellungen mit zwei lesbaren Standby-Bereitstellungen zu migrieren, die über eine Writer-Instance und zwei lesbare Standby-Instances in drei Availability Zones verfügen. Indem Sie eine Multi-AZ-Bereitstellung mit zwei lesbaren Standbys als Lesereplikat Ihrer vorhandenen RDS-PostgreSQL-Datenbank-Instance erstellen, können Sie die Read Replica in der Regel innerhalb weniger Minuten zu Ihrem neuen primären Replikat heraufstufen. 

Amazon Detective fügt Amazon VPC Flow Logs-Visualisierungen für Amazon EKS-Workloads hinzu

Amazon Detective fügt jetzt visuelle Zusammenfassungen und Analysen zu Ihren Amazon Virtual Private Cloud (VPC) -Flow-Protokollen aus Ihren Amazon Elastic Kubernetes Service (EKS) -Workloads hinzu. Diese neue Funktion visualisiert den gesamten Netzwerkverkehr Ihrer EKS-Workloads und ermöglicht es Ihnen, schnell Fragen wie „Welche Ports oder Netzwerkdienste wurden von meinen EKS-Workloads verwendet?“, „Gab es große Datenübertragungen von meinen EKS-Workloads?“ und „Welche IP-Adresse war mit meinen EKS-Workloads verbunden?“ zu beantworten. Diese Details helfen Sicherheitsanalysten, potenzielle Sicherheitsprobleme zu untersuchen, unerwartetes Netzwerkverhalten zu diagnostizieren und andere AWS-Ressourcen zu identifizieren, die betroffen sein könnten.

Amazon Aurora unterstützt PostgreSQL 14.6, 13.9, 12.13, 11.18

Nach der Ankündigung von Updates für die PostgreSQL-Datenbank durch die Open-Source-Community haben wir die mit Amazon Aurora PostgreSQL kompatible Edition aktualisiert, um PostgreSQL 14.6, 13.9, 12.13 und 11.18 zu unterstützen. Diese Versionen enthalten Produktverbesserungen und Bugfixes der PostgreSQL-Community sowie Aurora-spezifische Verbesserungen. Lesen Sie die Aurora-Versionsrichtlinie, um zu entscheiden, wie oft Sie ein Upgrade durchführen und wie Sie Ihren Upgrade-Prozess planen. Zur Erinnerung: Wenn Sie eine Version von Amazon Aurora PostgreSQL 10 ausführen, müssen Sie bis zum 31. Januar 2023 ein Upgrade auf eine neuere Hauptversion vornehmen.